Стадии мейоза. Мейоз и его фазы

Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900).

Хотя мейоз открыт более 100 лет назад, но изучение мейоза продолжается до сих пор. Интерес к мейозу резко возрос в конце 60-х годов, когда выяс­нилось, что одни и те же контролируемые генами ферменты могут принимать участие во многих процессах, связанных с ДНК. В по­следнее время ряд биологов развивают оригинальную идею: мейоз у высших организмов служит гарантом стабильности генетического материала, ибо в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на точность и восстановление повреждений, затрагивающих сразу обе нити. Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветки знания - цитогенетики, тесно соприкасающейся ныне с молекулярной биологией и генной инженерией.

Биологическое значение мейоза заключается в следующих процессах:

1.Благодаря редукции числа хромосом в результате мейоза в ряду поколений при половом размножении обеспечива­ется постоянство числа хромосом.

2.Независимое распределение хромосом в анафазе первого деления обеспечивает рекомбинацию генов, относящих­ся к разным группам сцепления (находящихся в разных хромосомах). Мейотическое распределение хромосом по дочерним клеткам называется сегрегацией хромосом.

3.Кроссинговер в профазе I мейоза обеспечивает рекомбинацию генов, относящихся к одной группе сцепления (находящихся в одной хромосоме).

4. Случайное сочетание гамет при оплодотворении вместе с вышеперечисленными процессами способствует генети­ческой изменчивости.

5. В процессе мейоза происходит еще одно существенное явление. Это процесс активации синтеза РНК (или транскрип­ционной деятельности хромосом) в ходе профазы (диплотены), связанный с формированием хромосом типа «ламповых щеток» (обнаружены у животных и некоторых растений).

Эта ревер­сия профазы к интерфазному состоянию (при митозе только в интерфазе идет синтез и-РНК) является специфической харак­теристикой мейоза как особого типа деления клеток.

Следует отметить, что у простейших наблюдается значительное разнообразие процессов мейоза.

В соответствии с положением в жизненном цикле различают три типа мейоза:

Зиготны й (исходный) мейоз происходит в зиготе, т.е. непосредственно после оплодотворения. Он характерен для организмов, в жизненном цикле которых преобладает гаплоидная фаза (аскомицеты, бизидиомицеты, некото­рые водоросли, споровики и др.).

Гаметный (терминальный) мейоз происходит во время формирования гамет. Он наблюдается у многоклеточных животных (в т.ч. у человека), а также среди простейших и некоторых низших растений, в жизненном цикле которых преобладает диплоидная фаза.

Промежуточный (споровый) мейоз протекает во время спорообразования у высших растений, включаясь между стадиями спорофита (растения) и гаметофита (пыльца, зародышевый мешок).

Таким образом, мейоз - это форма ядерного деления, сопро­вождающаяся уменьшением числа хромосом с диплоидного до гаплоидного и изменением генетического материала. Результат мейоза - образование клеток с гаплоидным набором хромосом (половых клеток).

Продол­жительность мейоза может отличаться в зависимости от вида растений и животных (табл. 1).

Таблица 1. Продолжительность мейоза у различных видов растений

Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным , реже – гетеротипным . Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным . Выражения «мейоз» и «редукционное деление» часто используют как синонимы.

Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n). Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном.

Количество геномов в клетке называется геномным числом (n). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.

Морфология мейоза - характеристика фаз

Интерфаза

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.

При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза

ДНК прошла репликацию. Начитается профаза I, самая продолжительная стадия мейоза.

Стадия профазы I подразделяется на следующие стадии:

лептотена - стадия тонких нитей;

зиготена - стадия двойных нитей;

пахитена - стадия толстых нитей;

диплотена - кроссинговер;

диакинез - исчезновение ядерной оболочки и ядрышка.

В ранней профазе (лептотене) происходит подготовка к ко­нъюгации хромосом. Хромосомы уже удвоены, но сестринские хроматиды в них еще неразличимы. Хромосомы начинают упа­ковываться (спирализоваться).

В отличие от профазы митоза, где хромосомы расположены по мембране ядра конец в конец и, упа­ковываясь, притягиваются к мембране, лептотенные хромосомы своими теломерными участками (концами) располагаются в одном из полюсов ядра, образуя фигуру «букета» у животных и сжатие в клубок «синезис» - у растений. Такое расположение или ориентации в ядре позволяет хромосомам быстрее и легче осуществлять конъюгацию гомологичных локусов хромосом (рис. 1).

Центральное событие - таинствен­ный процесс узнавания гомологичных хромосом и их попарное сближение друг с другом происходит в зиготене профазы I. При конъюгации (сближении) гомологичных хромосом происходит образование пар - бивалентов и хромосомы заметно укорачиваются. С этого момента начинается формирование синаптонемного комплекса (СК). Формирование синаптонемного комплекса и синопсис хромосом - синонимы.

Рис. 1. Стадия профазы

В ходе следующей стадии профазы I – пахитене между гомологичными хромосомами усивается тесное соприкосновение, которое и называется синапсисом (от греч. synopsis - соединение, связь). Хромосомы в этой стадии сильно спирализованы, что делает возможным наблюдение их под микроскопом.

В ходе синапсиса гомологи переплетаются, т.е. конъюгируют. Конъюгирующие биваленты связаны хиазмами. Каждый бивалент состоит из двух хромосом и четырех хроматид, где каждая хромосома пришла от своего родителя. При образовании синапсиса (СК), происходит обмен участками между гомологичными хроматидами. Этот процесс, называемый кроссинговером, приводит к тому, что хроматиды теперь имеют иной состав генов.

Синаптонемный комплекс (СК) в пахитене достигает наибольшего развития и в этот период представляет собой лентовидную структуру, располагающуюся в пространстве между параллельно лежащими гомологичными хромосомами. СК состоит из двух параллельных латеральных элементов, сформированных плотно уложенными белками и менее плотного центрального элемента, протягивающегося между ними (рис. 2).

Рис. 2. Схема синаптонемного комлекса

Каждый латеральный элемент формируется парой сестринских хроматид в виде продольной оси лептотенной хромосомы и до того, как становится частью СК, носит название осевого элемента. Боковые петли хроматина лежат вне СК, окружая его со всех сторон.

Развитие СК в процессе мейоза :

лептотена-структура хромосом, вступивших в лептотену, сразу же оказывается необычной: в каждом гомологе наблюдается продольный тяж, идущий по оси хромосом на всем ее протяжении;

зиготена - на этой стадии осевые тяжи гомологов сближаются, при этом концы осевых тяжей, прикрепленных к ядерной мембране, как бы скользят по ее внутренней поверхности навстречу друг к другу;

пахитена. Наибольшее развитие СК достигает в пахитене, когда все элементы его приобретают максимальную плотность, а хроматин - вид плотной сплошной «шубы» вокруг него.

Функции СК:

1.Полностью развитый синаптонемный комплекс необходим для нормального удержания гомологов в биваленте так долго, как это необходимо для осуществления кроссинговера и закладки хиазм. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2 ч у дрожжей до 2–3 сут. у человека), в течение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК - кроссинговер (от англ, crossing over - образование перекреста).

2.Предотвращение слишком прочного соединения гомологов и удержание их на определенном расстоянии, сохранение их индивидуальности, создание возможности оттолкнуться в диплотене и разойтись в анафазе.

Процесс кроссинговера связан с работой определенных ферментов, которые при образовании хиазм между сестринскими хроматидами, «разрезают» их в месте перекреста с последующим воссоединением образовавшихся фрагментов. В большинстве случаев указанные процессы не приводят к каким-либо нарушениям в генетической структуре гомологичных хромосом, т.е. происходит правильное соединение фрагментов хроматид и восстановление их первоначального строения.

Однако, возможен и другой (более редкий) вариант событий, который связан с ошибочным воссоединением фрагментов разрезанных структур. При этом происходит взаимный обмен участками генетического материала между конъюгирующими хроматидами (генетическая рекомбинация).

На рис. 3 приведена упрощенная схема некоторых возможных вариантов одиночного либо двойного кроссинговера с участием двух хроматид из пары гомологичных хромосом. Необходимо подчеркнуть, что кроссинговер представляет собой случайное событие, которое с той или иной вероятностью может возникнуть на любом участке (либо на двух и большем числе участков) гомологичных хромосом. Следовательно, на этапе созревания гамет эукариотического организма в профазе первого деления мейоза действует универсальный принцип случайного (свободного) комбинирования (рекомбинации) генетического материала гомологичных хромосом.

В цитологических исследованиях синапсиса в последние два десятилетия важную роль играет метод распластывания профазных мейотических клеток животных и растений под действием гипотонического раствора. Метод вошел в цитогенетику после работ Мозеса и сыграл такую же роль, какую в свое время сыграл метод приготовления «давленых» препаратов для исследования метафазных хромосом, избавив цитогенетиков от микротомных срезов.

Метод Мозеса и его модификации стали более удобными, чем анализ СК на ультратонких срезах. Этот метод был положен в основу исследований мейоза и постепенно охватил вопросы генного контроля мейоза у животных и растений.

Рис. 3. Отдельные варианты одиночного и двойного кроссинговера с участием двух хроматид: 1 исходные хроматиды и вариант без кроссинговера; 2 одиночный кроссинговер на участке А В и кроссоверные хроматиды; 3 одиночный кроссинговер на участке В-С и кроссоверные хроматиды; 4 двойной кроссинговер и кроссоверные хроматиды нескольких разных участках на основе гомологичности генетического материала этих участков. Полагают, что с каждой стороны в процессе конъюгации могут участвовать либо одна из двух сестринских хроматид соответствующей хромосомы либо обе хроматиды.

В диппотене гомологичные хромосомы после спаривания и кроссинговера начинают отталкиваться друг от друга. Процесс отталкивания начинается с центромер. Расхождению гомологов препятствуют хиазмы - место соединения несестринских хроматид, возникших в результате перекреста. По мере расхождения хроматид некоторые хиазмы смещаются к концу плеча хромосомы. Обычно перекрестов бы­вает несколько, и чем длиннее хромосомы, тем их больше, поэтому в диплотене, как правило, несколько хиазм в одном биваленте.

В стадии диакинеза происходит уменьшение числа хиазм. Биваленты располагаются по периферии ядра. Ядрышко растворяется, мембрана разрушается и начинается переход к метафазе I. На протяжении всей профазы сохраняется ядрышко и ядерная оболочка. Перед профазой в период синтетического периода интерфазы происходит репликация ДНК и репродукция хромосом. Однако полностью этот синтез не заканчивается: ДНК синтезируется на 99,8%, а белки - на 75%. Синтез ДНК заканчивается в пахитене, белков - в диплотене.

В метафазе I становится заметной веретеновидная структура, образуемая микротрубочками. В ходе мейоза к центромерам хромосом каждого бивалента прикрепляются отдельные микрокрубочки. Затем пары хромосом перемещаются в экваториальную плоскость клетки, где выстраиваются в случайном порядке. Центромеры гомологичных хромосом располагаются в противоположных сторонах от экваториальной плоскости; в метафазе митоза, напротив, центромеры отдельных хромосом располагаются в экваториальной плоскости.

В метафазе I биваленты располагаются в центре клетки, в зоне экваториальной пластинки (рис. 4).

Рис. 4. Стадии мейоза: профаза I - метафаза I

Анафаза начинается с расхождения гомологичных хромосом и движения их в направлении полюсов. У хромосом без центромера крепления не может существовать. В анафазе митоза цент­ромеры делятся и идентичные хроматиды расходятся. В анафазе I мейоза центромеры не делятся, хроматиды остаются вместе, а разъединяются гомологичные хромосомы. Однако из-за обмена фрагментами в результате кроссинговера хроматиды не идентич­ны, как в начале мейоза. В анафазе I конъюгирующие гомологи расходятся к полюсам.

В дочерних клетках число хромосом вдвое меньше (гаплоидный набор), при этом масса ДНК уменьшается также вдвое и хромосомы остаются дихроматидными. Точное расхождение гомологичных пар к противоположным полюсам лежит в основе редукции их числа.

В телофазе I происходит сосредоточение хромосом у по­люсов, некоторая их деконденсация, за счет чего спирализация хромосом ослабевает, они удлиняются и снова становятся не­различимыми (рис. 5). По мере того как телофаза постепенно переходит в интерфазу, из эндоплазматического ретикулума возникает ядерная оболочка (в том числе и из фрагментов оболочки ядра материнской клетки), а также клеточная пере­городка. Наконец вновь образуется ядрышко и возобновляется синтез белка.

Рис. 5. Стадии мейоза: анафаза I - телофаза I

В интеркинезе образуются ядра, в каждой из которых находится n дихроматидных хромосом.

Особенность второго деления мейоза состоит, прежде всего, в том, что в интерфазе II не происходит удвоения хроматина, поэтому каждая клетка, вступающая в профазу II, сохраняет прежнее соотношение n2с.

Второе деление мейоза

В период второго деления мейоза сестринские хроматиды каждой хромосомы расходятся к полюсам. Поскольку в про­фазе I мог произойти кроссинговер и сестринские хроматиды могли стать неидентичными, то принято говорить, что второе деление протекает по типу митоза, однако это не настоящий митоз, при котором в норме дочерние клетки содержат хромо­сомы идентичные по форме и набору генов.

В начале второго мейотического деления хроматиды все еще связаны центромерами. Это деление похоже на митоз: если в телофазе I образовалась ядерная оболочка, то теперь она раз­рушается, и к концу короткой профазы II исчезает ядрышко.

Рис. 6. Стадии мейоза: профаза II-метафаза II

В метафазе II снова можно увидеть веретено и хромосомы, состоящие из двух хроматид. Хромосомы прикрепляются цент­ромерами к нитям веретена и выстраиваются в экваториальной плоскости (рис. 6). В анафазе II центромеры делятся и расходятся, а сестринские хроматиды, ставшие теперь хромосомами, движутся к противоположным полюсам. В телофазе II образуются новые ядерные оболочки и ядрышки, сжатие хромосом ослабевает и в интерфазном ядре они становятся невидимыми (рис. 7).

Рис. 7. Стадии мейоза: анафаза II - телофаза II

Завершается мейоз формированием гаплоидных клеток - гаметы, тетрады спор - потомков исходной клетки с редукционным вдвое (гаплоидным) набором хромосом и гаплоидной массой ДНК (исходная клетка 2n, 4с, - споры, гаметы - n, с).

Общая схема распределения хромосом гомологичной пары и содержащихся в них двух пар различающихся аллельных генов во время двух делений мейоза приведена на рис.8. Как видно из этой схемы, возможны два принципиально разных варианта такого распределения. Первый (более вероятный) вариант связан с образованием двух типов генетически различающихся гамет с хромосомами, не претерпевшими кроссинговеров на участках, где локализованы рассматриваемые гены. Такие гаметы принято называть некроссоверными. При втором (менее вероятном) варианте наряду с некроссоверными возникают также кроссоверные гаметы как результат генетического обмена (генетической рекомбинации) в участках гомологичных хромосом, расположенных между локусами двух неаллельных генов.

Рис. 8. Два варианта распределения хромосом гомологичной пары и содержащихся в них неаллельных генов как результат двух делений мейоза

Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.

Мейоз

Основные понятия и определения

Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон » – меньше – и от «мейозис » – уменьшение). Часто уменьшение числа хромосом называется редукцией .

Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n ) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n ).

Минимальное число хромосом в клетке называется основным числом (x ). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется гено м. Количество гено мов в клетке называется гено мным числом (Ω). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие гено много числа совпадают. Например, у человека n =x =23 и 2n =2x =46.

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Мейотическое распределение хромосом по дочерним клеткам называется сегрегацией хромосом .

Краткая история открытия мейоза

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

Общий ход мейоза

Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II . В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным , реже – гетеротипным . Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным . Выражения «мейоз» и «редукционное деление» часто используют как синонимы.



Интерфаза

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n ) содержание ДНК составляет 4с .

При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное деление , или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза 1 (профаза первого деления) состоит из ряда стадий:

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей. Раннюю лептотену, когда нити хромосом видны еще очень плохо, называют пролептотена .

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты . Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов . Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады , так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК (образуется особая пахитенная ДНК ). Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Отдельные биваленты располагаются на периферии ядра.

Метафаза I (метафаза первого деления)

В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходит метакинез – биваленты перемещаются в экваториальную плоскость клетки.

Анафаза I (анафаза первого деления)

Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом .

Телофаза I (телофаза первого деления)

Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с .

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом .

Интеркинез

Интеркинез – это короткий промежуток между двумя мейотическими делениями. Отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное деление , или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления)

Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления)

Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут лежать в одной плоскости, могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления)

Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления)

Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с .

Типы мейоза и его биологическое значение

В общем случае в результате мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением . При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам или зооспорам. Эти типы мейоза характерны для низших эукариот, грибов и растений. Споровый мейоз тесно связан со спорогенезом . Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения .

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Мейомз (от др.-греч. меЯщуйт -- уменьшение) или редукционное деление клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза. При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, детерминация гоноцитов у рачка циклопа происходит уже на первом делении зиготы: одна из двух клеток дает начало герминальным клеткам. У аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • · Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:
  • · Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • · Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • · Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.
  • · Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
  • · Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • · Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • · Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • · Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • · Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
  • · Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • · Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.
  • · Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).



gastroguru © 2017